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A new class of quasi-exactly solvable potentials with position dependent mass
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A new class of quasi exactly solvable potentials with a variable mass in the Schrödinger equation is
presented. We have derived a general expression for the potentials also including Natanzon confluent
potentials. The general solution of the Schrödinger equation is determined and the eigenstates are
expressed in terms of the orthogonal polynomials.

PACS numbers:

In recent years, physical systems with a position dependent mass[1, 2, 3] and quasi exactly solvable(QES)
potentials[4] have been the focus of interest. The effective mass models have been used to describe electronic prop-
erties of semiconductors, liquid crystals and various other physical systems[5]. In this letter we suggest a method to
obtain a general solution of the Schrödinger equation with a position dependent mass.

We start with a general Hermitian effective mass Hamiltonian which is proposed by von Roos[6]

H =
1

4

(

mα(x)pmβ(x)pmγ(x) +mγ(x)pmβ(x)pmα(x)
)

+ V (x) (1)

with the constraint over the parameters: α+ β+ γ = −1. Depending on the choice of parameters the Hamiltonian(1)
can be expressed in different forms[2]. However, we shall keep the general form of the Hamiltonian. Using the
differential operator equivalence of momentum operator p = −i d

dx
, it is easy to show that the Hamiltonian (1) can

be written as

−
1

2m(x)

d2ψ(x)

dx2
+

m′(x)

2m2(x)

dψ(x)

dx
+ (V (x) − E)ψ(x)+

[

(1 + β)m(x)m′′(x) − 2(β + 1 + α(α + β + 1)m′2(x)
] ψ(x)

4m3(x)
= 0 (2)

where E is the eigenvalue of the Hamiltonian (1). Our task is now to obtain a general expression for the potential
V (x) such that the Schrödinger equation can be solved quasi-exactly. Without loss of generality, consider the following
QES second order differential equation[7],

z
d2ℜ(z)

dz2
+

(

ℓ+
3

2
+ z(b− qz)

)

dℜ(z)

dz
+ (−ε+ 2jqz)ℜ(z) = 0 (3)

where ℓ, b, q and ε are constants and j takes integer and half integer values. The function ℜ(z) is a polynomial of
degree 2j. The differential equation can be obtained by introducing the following linear and bilinear combinations of
the generators of the sl(2, R) Lie algebra,

[J−J0 + (ℓ+ j + 1/2)J− + qJ+ + bJ0 + (−ε+ jb)]ℜ(z) = 0 (4)

which is quasi exactly solvable(QES)[4]. The differential realizations of the generators of the algebra is given by[4],

J− =
d

dz
, J0 = z

d

dz
− j, J+ = −z2 d

dz
+ 2jz. (5)

The function ℜ(z) forms a basis for sl(2, R) Lie algebra. The solution of the differential equation(3) which was
determined in the paper[7] is in the following form

ℜj(z
2) =

2j
∑

m=0

(2j)!(2ℓ+ 1)!(ℓ +m)!

2m!(2j −m)!(2ℓ+ 1 + 2m)!
Pm(ε)(−qz2)m. (6)
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Here the polynomial Pm(ε) satisfies the recurrence relation

(2j −m)qPm+1(ε) − (ε− bm)Pm(ε) +m(ℓ+m+ 1/2)Pm−1(ε) = 0 (7)

with the initial condition P0(ε) = 1. The polynomial Pm(ε) vanishes for m > 2j + 1 and the roots of P2j+1(ε) = 0
correspond to the ε−eigenvalues of the algebraic Hamiltonian(4). It is well known that the differential equation
(3) can be transformed into the form of the Schrödinger equation and several quantum mechanical potentials can
be generated. In order to discuss all the potentials related to the differential equation(3), in a unified manner we
introduce a variable z = r(x) then the equation (3) takes the form:

r

r′2
d2
ℜ(x)

dx2
+

1

r′

[

ℓ+ 3/2 + r(b − qr) −
rr′′

r′2

]

dℜ(x)

dx
+ (−ε+ 2jqr)ℜ(x) = 0 (8)

Now lets turn our attention to the effective mass Schrödinger equation(2). In this case both the Schrödinger equation
and the QES differential equation (8) include first order differential terms. One can easily transform the effective
mass Schrödinger equation into the form of (8). It is convenient to express the eigenfunction ψ(x) in the usual form

ψ(x) = −
2r

r′2
m(x)e−

∫

W (x)dx
ℜ(x). (9)

Substituting (9) into (2) and then comparing with (8) we obtain the following expression for the weight function W (x)

W (x) =
1

4

(

2m′(x)

m(x)
−

6r′′

r′
+

(1 − 2ℓ− 2br + 2qr2)r′

r

)

(10)

and an implicit expression for the potential function, as follows

m(x) [V (x) − E] =

(β + 1/4 + α(α+ β + 1))m′2(x)

2m2(x)
− β

m′′(x)

4m(x)
+

3

8

(

r′′

r′

)2

−
r′′′

4r′
(11)

(

b2 − (2ℓ+ 8j + 5)q +
4ε+ b(2ℓ+ 3)

r
+
ℓ(ℓ+ 1) − 3/4

r2
− 2bqr + q2r2

)

r′2

8
,

where ri is ith derivative of r with respect to x.
At this point we first discuss the special form of the above potential. When we choose q = 0 the potential is exactly

solvable. Under the conditions, q = 0 and m(x) =constant the potential leads to the Natanzon confluent potentials[8].
To obtain the quantum mechanical potentials the function r(x) should satisfy the relation

√

λ0 + λ1/r(x) + λ2/r2(x)
dr

dx
= −

√

m(x). (12)

As for the special cases, λ0 = λ2 = 0, the potential corresponds to the radial sextic oscillator potential; λ1 = λ2 = 0
to the QES Coulomb potential and λ0 = λ1 = 0, to the Morse potential.

For the corresponding special cases we obtain the following mass dependent potentials with some parameters. Let

λ0 = λ2 = 0 and λ1 = 1/4 then r(x) = −u2 = −

[

∫
√

m(x)dx
]2

and the potential takes the form,

V (x) =
ℓ(ℓ+ 1)

2u2
+

1

2

(

b2 − (2ℓ+ 8j + 5)q
)

u2 + bqu4 +
1

2
q2u6 +

(α(α+ β + 1) + β + 9/16)m′2(x)

2m3(x)
−

(1 + 2β)m′′(x)

8m2(x)
. (13)

This is a family of radial sextic oscillator potential. We have checked that the for choice of q = 0 and m(x) =
(

a+x2

1+x2

)2

the potential takes the same form as the potential given in the paper[2] and for m(x) = cx2 the potential corresponds
to the potential given by Dutra[3]. The eigenvalue of the Schrödinger equation with the potential given in (7) is given
by

E =

(

ℓ+
3

2

)

b+ 2ǫ. (14)
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The energy parameter ε is obtained from the recurrence relation(7).
For the cases λ1 = λ2 = 0 and λ0 = 1/4 the function r(x) = −2u and the potential takes the form

V (x) =
ℓ(ℓ+ 1) − 3/4

8u2
−

4ε+ (2ℓ+ 3)b

4u
+ 2bqu+ 2q2u2 +

(α(α + β + 1) + β + 9/16)m′2(x)

2m3(x)
−

(1 + 2β)m′′(x)

8m2(x)
. (15)

This potential represents a family of QES Coulomb potentials. In order to obtain the standard form of the potential
one should redefine the parameters. The eigenvalues of the potential is given by

E = −
1

2
((2ℓ+ 8j + 5)q − b2) (16)

For the last example we choose λ0 = λ1 = 0 and λ2 = 1 to obtain a family of QES Morse potentials. Then r(x) = e−u

and the potential takes the form

V (x) =
1

2
(ε+ (ℓ/2 + 3/4)b) e−u +

1

2

(

b2/4 − (ℓ/2 + j + 5/4)q
)

e−2u
−

bq

4
e−3u +

q2

8
e−4u+ (17)

(α(α+ β + 1) + β + 9/16)m′2(x)

2m3(x)
−

(1 + 2β)m′′(x)

8m2(x)
.

The standard form of the Morse potential can be obtained by reordering the parameters. The corresponding eigenvalue
is given by

E = −
1

8
(ℓ(ℓ+ 1) + 1/4) . (18)

We have constructed a class of QES potential for the generalized effective mass Hamiltonian without any restriction
in the parameters α and β. We have shown that one can obtain a family of potentials, related to the sextic oscillator,
QES Coulomb and QES Morse potentials. The method discussed here can be used to obtain other class of potentials
which can be related to the hypergeometric Natanzon class potentials.
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